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All experimental observations of the growth of fully developed dendritic ice crystals 
indicate that the shape of the tip region is an elliptical paraboloid. Therefore, 
moving- boundary solutions of the three-dimensional Navier-Stokes and energy 
equations are obtained here for the shape-preserving growth of isothermal elliptical 
paraboloids by using the Oseen approximation which is valid for the low-Reynolds- 
number viscous flows which prevail in dendritic growth. Explicit expressions for the 
flow and the temperature fields are derived in a simple way using Ivantsov’s method. 
It is shown that the growth PBclet number, PG, is a function of the aspect ratio A ,  
the Stefan number St, the Reynolds number Re, and the Prandtl number Pr. As the 
Reynolds number increases P becomes linear in St, less dependent on A and 

G, 
ultimately varies roughly as Rer. 

A comparison between the exact solutions given here and the experiments of 
Kallungal (1974) indicate that A decreases as Re increases. This result agrees 
qualitatively with the experiments of Kallungal (1974) and Chang (1985). The 
differences between theory and experiments for Re > may be due to attachment 
kinetic resistance to growth along the c-axis and capillary effects a t  the tip which 
make ice dendrites non-isothermal and create conduction in the solid phase. 
However, more accurate simultaneous measurements of R,  and R,  are needed to 
determine definitively the mechanisms responsible for these deviations between 
theory and experiment. 

1. Introduction 
Dendritic growth is inherently a three-dimensional nonlinear phenomenon which 

is markedly influenced by the shape (aspect ratio) of the moving interface, especially 
in the neighbourhood of the leading tip. Two-dimensional representations may 
underpredict the growth rate of dendrites dramatically, especially a t  small values of 
the undercooling AT, or Stefan number X t .  The rate of growth is driven by the transfer 
of latent heat from the solid-liquid interface which sees a three-dimensional 
subcooled melt, and the interface (as in the case of ice-water for example) often is not 
axisymmetric. Because of its fundamental importance, the effect of shape on the 
growth rate of dendrites in the presence of flow is the subject of this study. 

Ivantsov (1947) showed that in the absence of convection, an isothermal 
paraboloid of revolution grows steadily in a shape-preserving manner. Ananth & Gill 
(1984) recast Ivantsov’s method into a similarity approach and applied it to a two- 
phase conduction problem. Horvay & Cahn (1961) extended Ivantsov’s solutjon to 
an elliptical paraboloid and showed that the shape, characterized by the aspect ratio, 

t Author to whom correspondence should be addressed. 
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A ,  has a large effect on the growth rate. In  this work, we shall generalize the results 
of Horvay & Cahn to include convection by applying the similarity approach to 
obtain self-consistent moving-boundary solutions of the Navier-Stokes and energy 
equations in which the Navier-Stokes equations are well approximated by using the 
Oseen viscous flow equations at low Reynolds numbers Re. We shall show that the 
effect of shape on the growth of the dendrite tip is very significant, but for a given 
value of the Stefan number this effect becomes less pronounced as the Reynolds 
number is increased. 

Lagerstrom & Cole (1955) and Lagerstrom (1964) have considered, at low Reynolds 
numbers, the use of the Oseen equations as uniformly valid approximations of 
the Navier-Stokes equations. They conclude that the Oseen approximation is 
appropriate for three-dimensional semi-infinite bodies, i.e. elliptical paraboloids, if 
the body shrinks to a line and therefore has no ‘arresting power ’ as the Reynolds 
number goes to zero. Clearly, the elliptical paraboloid shrinks to a line parallel to the 
flow for Re --f 0,  A fixed, where the low-Re limit occurs because the lengthscale shrinks 
to zero. This general statement of Lagerstrom and Cole has been verified numerically 
by Davis & Werle (1972) who showed that the numerical solution of the 
Navier-Stokes equation agrees with the Oseen solution over the entire surface of the 
body for Re < 0.05 and A = 1.  

Furthermore, for the two-dimensional parabolic cylinder, the Oseen solution is not 
appropriate because the body shrinks to a semi-infinite plane which does have 
‘arresting power’ and disturbs the flow at infinity. In this case Davis (1972) found 
that the Oseen equations do not give satisfactory results as Re -+ 0. 

It also is significant that a t  low Reynolds numbers the Stokes’ solution, which 
applies near the body, is contained in the Oseen approximation. We show this 
explicitly in Appendix B, and it is noted on page 89 in Lagerstrom’s (1964) paper. 
The solution of Stokes does not satisfy the far-field boundary condition due to the 
Stokes paradox. The arbitrary constant which appears in this solution is evaluated 
by matching with the Oseen solution up to order Re’2. 

Several forced convection theories have been reported in the literature for 
stationary parabolic cylinders or paraboloids of revolution. Fernandez & Barduhn 
(1967) made the first attempt to predict the growth rate of ice by neglecting the 
moving boundary and assuming that ice dendrites are parabolic cylinders from 
which the rate of heat transfer can be determined by making boundary-layer 
assumptions. Simpson, Beggs & Deans (1975) proposed a creeping-flow model by 
employing the linearized form of the numerical solutions given by Davis (1972), and 
Dennis & Walsh (1971). Huang (1975) made two-dimensional thermal convection 
calculations for a stationary parabolic cylinder using boundary-layer theory. Cantor 
& Vogel (1977), and Doherty, Cantor & Fairs (1978) assumed that a stagnant film 
exists near the solid-liquid interface of a paraboloid of revolution and they estimated 
the film thickness by using forced-convection boundary-layer results which they 
developed for flow over a flat plate. None of these theories represents adequately the 
three-dimensional nature of this phenomenon. They all neglect the inherent effect of 
a moving interface and make boundary-layer assumptions that underestimate the 
effect of shape on the rate of heat transfer from dendrite tips which may have strong 
curvature because of their very small dimensions. 

Dash & Gill (1984) showed that the Oseen viscous flow approximation, instead of 
the boundary-layer assumptions, leads to exact forced-convection solutions for 
parabolic cylinders and paraboloids of revolution. Gill, Ananth & Tirmizi (1987) and 
Ananth & Gill ( 1 9 8 8 ~ )  generalized the Dash & Gill solutions to  include moving 
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boundaries and showed quantitatively that the movement of the interface creates an 
apparent convection effect which is increasingly important as the subcooling 
increases and as the velocity of the melt decreases. 

Ananth & Gill (1988 a, b )  developed three-dimensional moving-boundary solutions 
for the growth of axisymmetric dendrites, such as succinonitrile, in the presence of 
both forced ( 1 9 8 8 ~ )  and thermal (19883) convection. Their results are in good 
agreement with the experimental data of Huang & Glicksman (1981) on 
succinonitrile. In contrast to succinonitrile, the tips of ice dendrites have the shape 
of an elliptical paraboloid which is not axisymmetric. Because all of the existing 
theories, which include convection, assume that the dendrite is either a paraboloid 
of revolution or a parabolic cylinder, they fail to predict the growth rate accurately, 
as shown by Kind, Gill & Ananth (1987). Therefore, we shall study the effects of the 
moving boundary, the aspect ratio, and forced convection on the growth of the 
dendrites and compare our analysis with the experimental data on the growth of ice 
dendrites along the A-axis in order to gain insight into the factors that govern this 
interesting phenomenon. 

Several kinds of experiments have been described in the literature on the free 
growth of dendritic ice crystals. In  all of the experiments where the shape was 
observed, the tip region was reported to be very close to an elliptical paraboloid. In  
the experiments performed by Fujioka (1978), Huang & Barduhn (1985) and Tirmizi 
& Gill (1987) thermal (natural) convection played a significant role. Those by 
Kallungal & Barduhn (1977), Simpson et al. (1975), and Chang & Gill (1987) were 
dominated by forced convection. In the thermal-convection experiments crystals 
grow from a capillary tube into a melt which is quiescent except for the flow 
generated by gravity acting on a density distribution, which is created by the 
temperature gradients that result when the melt absorbs the heat of fusion, L ,  of the 
liquid-solid transformation. One typically encounters velocities of order lo-, cm/s in 
thermal-convection experiments with ice. In  the forced-convection experiments the 
flow of the subcooled melt is created and controlled by means external to the growth 
process itself, such as an elevated tank from which flow is throttled under a 
significant head, and flow velocities up to 70 cm/s have been reported by Kallungal 
& Barduhn (1977) in which case thermal convection is rendered completely 
negligible. The non-symmetric shape and the small size of R,, which is on the order 
of a few microns, imply that accurate measurements are much more difficult to make 
in the ice experiments than in the case of succinonitrile, where the tip radius is 
significantly larger (20 pm). The quantities which should be measured as functions of 
the subcooling, AT = T,-T,, and the flow rate of the melt, U,, in order to compare 
theory and experiments, are the A-axis growth velocity of the leading tip, V,, and the 
tip radii R, and R,. However, to date experimental difficulties have precluded the 
simultaneous measurement of R, and R,. Therefore, it is necessary to  combine 
the data of Kallungal & Barduhn on R, with the values of Chang & Gill for R,  in order 
to compare the experiments with our theory which relates the aspect ratio, 
A = R,/R,,  to PG, St, Pr, and Re. The experimental data that we have used are for 
5 x < Urn < 70 cm/s and 0.1 < AT < 1 K, and can be summarized as follows: 

V, = 0.0365 @, AT; cm/s 

R, = 6 x 10-5/AT cm 

R, = 1.54 x loW3 U;o.23AT-o.9 cm 

(Kallungal 1974), 

(Kallungal 1974), 

(Chang 1985). 

The analysis presented here and our previous ones provide an infinite set of 
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solutions from which nature selects one for a given set of experimental conditions for 
AT and U,. The ultimate theoretical problem is to predict how fully developed ice 
dendrites select a particular V,, R, and R, for a particular AT and U ,  and it 
should include the effects of anisotropic interface kinetics and capillarity. To our 
knowledge this problem has not yet been addressed. We do not consider it here and 
there are several aspects to  the process of selection which seem to be unresolved, as 
pointed out very recently by Xu (1988). 

Our purpose is to provide a new self-consistent base-state solution of the transport 
equations for the growth of an elliptical paraboloidal interface, the shape of which is 
known to approximate closely the tip of an ice dendrite, to  show how the parameters 
interact and affect PG, and to determine the extent to which our moving-boundary 
solutions to the Oseen and energy equations in the form P, = f(A,St,Re,Pr) are 
consistent with the experiments of Kallungal and Chang whose data indicate that the 
aspect ratio of the tip of ice dendrites decreases as the Reynolds number increases. 
As explained later, only qualitative comparisons between theory and experiments 
are possible because of the uncertainties in the data reported for R, and R,, and our 
assumption that the solid-liquid interface is isothermal. 

2. Analysis 
To fix ideas, consider the growth of a crystal from a melt which flows uniformly 

along the direction of the x-axis a t  a constant velocity U,, as shown in figure 1 .  The 
x-axis and z-axis in figure 1 correspond to the A-axis and C-axis of the ice crystal 
respectively. The melt is assumed to be infinite in extent, which implies that the 
growth of the dendrites is unencumbered by external surfaces. The pressure drop AF' 
is created owing to the presence of the crystal. The transfer of the latent heat of 
fusion from the moving interface to the melt is driven by the difference in 
temperature between the solid surface, which is assumed to  be at the normal melting 
point T,, and the bulk of the subcooled melt, which is T,. The density of the solid 
and liquid are equal, and the governing equations for any shape of the interface in 
fixed, rectilinear coordinates t ,  X ,  Y ,  2, are given by 

v -u=  0, (1)  

-+ u*vu = --VP+vVU, (2) 
at P 

au 1 

aT -+ U-VT = aV2T, 
at 

The boundary conditions are 

at' 7 = 1, which is the surface of the body, and 

U, = 0, U,  = 0, Uz = 0, T = T, 

Ux = U,, U ,  = 0, Uz = 0, T = T, 

a t  7 = co, which is a t  a large distance from the body. Also, 

a a a 
ax ay zaz V = e,-+e,-+e -. 

The interface is given in general by q(t,X, Y ,  Z ) ,  equal to a constant which we shall 
take to be 7 = 1. The energy balance at 7 = 1 determines the velocity V, a t  which the 

aT 
aN' 

interface moves ; i t  is given by 
pLVN = - k- (7) 
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FIGURE 1. Elliptical paraboloid crystal having an aspect ratio, A = RJR,. 
I/ = 1 represents the surface of the crystal. 

where v is the kinematic viscosity, a is the thermal diffusivity, p is the density of the 
solid, k is the thermal conductivity of the liquid, N is the direction normal to the 
interface and where 

p?#= (%)2 - + (””)’ - + (37)’ - 
ax ay az 

Ivantsov (1947) presented an approach to solve (3)-(8), in the absence of 
convection in the melt, and showed that an isothermal parabolic interface preserves 
its shape during its growth, because the isotherms in the quiscent melt are also 
paraboloids. Horvay & Cahn (1961) generalized Ivantsov’s solution to the steady 
growth of an elliptical paraboloid and showed that the elliptical paraboloid crystal 
also preserves its shape. In  this analysis, we shall show that with an Oseen viscous 
flow in the melt, as depicted in figure 1, an elliptical paraboloidal crystal retains its 
shape as it grows. First we postulate that the temperature field established by the 
dissipation of latent heat from the moving interface can be obtained in the form 

T = T(V), 
where the similarity variable 7 is 

(9) 

and x, y, z are moving coordinates which are related to the fixed coordinates by 



580 R. Ananth and W. N. Gill 

One can derive (10) by using Ivantsov's approach, in which 7 is found by 
generalizing (7).  This method has been discussed in detail by Ananth (1988), who 
considered the case of axisymmetric fluid flow over a surface of revolution, and by 
Ananth & Gill (1984). The aspect ratio is A = R2/R, > 1, and R, and R, are the radii 
of curvature of the tip, which are the lengthscales that define the size of the dendrite. 
When 7 equals a constant, (10) represents the isotherms, and 7 = 1 is the surface of 
an elliptical paraboloidal crystal which grows with a constant velocity, V,, in the 
direction of the x-axis. Next, we shall show that (9) and (10) lead to exact solutions 
of (1)-(8) if one employs the Oseen or Stokes approximations in (2). Furthermore, 
our analysis demonstrates that the rate of heat transfer from the interface, the rate 
of growth of the dendrite and the magnitude of the aspect ratio are all interconnected 
and are profoundly affected by the intensity of the convection in the melt. The 
connection between convection and the aspect ratio appears to  be a subtle but 
important one. 

At steady state, the Oseen form of (1)-(7), relative to an observer moving with the 
interface, is given as follows : 

continuity equation 

ax ay a2 R, 
aT aT aT a 

u-+v-+w-=- 
energy equation 

Substituting (9) and (10) into (16a), we obtain 

where 

The precise dependence off on 7 and the system parameters will be given later, in 
(26). 

In addition to (16) the boundary conditions are 

u=V,, w = O ,  w=O,  T=T, a t 7 = 1 ,  (17) 

u=U,+V,, v = O ,  w = O ,  T=T, at1;1=co, (18) 

(19) 

where the Reynolds number is Re = U,  RJv, and p is the pressure. u, v, w are the 
fluid velocity components in the x-, y-, z-directions measured relative to an observer 

and Re' is defined by 
Re' =Re+-, vG Rl 

V 
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moving with the interface. They are related to the fluid velocities measured with 
respect to the fixed coordinates by 

where V, is the steady-state growth velocity of the interface. 

observer, are given by 

u = VG+UZ, u = u,, w = u,, p = P ,  (20% b, c, d )  

As shown in Appendix A the fluid velocities, u, v, w, measured relative to a moving 

'urn exp ( - @e') - exp ( - @'e'q) 
u =  u m + v G -  

exp ( - Lpe'y) 
ld7, ( 2 1 )  

[7(A - 1 + 7)15 

exp ( -$el)  - exp ( - &e'y) 
CRe'[q(A - 1 + 7)]: 

exp ( - @e') - exp ( - L&e'7) 

2YUm { V =  

2xum { CRe'[q(A-1+7)]+ 

and the pressure is given by 

where 

The velocity components u, u, w, and pressure p ,  which are given explicitly by 
(21)-(24a) were derived here in a relatively simple way by using Ivantsov's 
approach. In  contrast, the procedure described by Wilkinson (1955) involves 
laborious coordinate transformations and assumes that the interface is stationary. 

The thermal field is obtained by integrating (16 6 )  with the boundary conditions for 
temperature given by (17) and (18). The result is 

where f is a function of 7 and the parameters are the Reynolds number Re, the growth 
PBclet number P,, the Prandtl number Pr, and the aspect ratio A .  The function f, 
which is determined by substituting (21)-(24) into (16c), is given explicitly by 
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Equation (26) is of central importance in this analysis because it determines : (i) the 
behaviour of the thermal field in the neighbourhood of the dendrite, (ii) the heat 
transfer characteristics of the system, and (iii) the fact that Oseen viscous flow and 
translating elliptical paraboloidal interfaces which generate latent heat are 
compatible with one another. 

The heat flux balance at the interface, given by (7),  can be written as 

where N is the vector normal to the interface and is given by 

By substituting @a),  (9) and (28) into (27) we get 

where 7 and its partial derivatives in (27)-(29) are evaluated with respect to the fixed 
coordinates X, Y ,  2. Equations (10) and (11) when substituted into (29) yield 

and substituting (25) into (30) gives 

Nu = Nu(Re, A ,  PG, Pr),  (31 

Nu, = Nu/[l+(y/A)2+z2]i, (31c) 

where the Nusselt number at the tip is Nu = hR,/k, h is the heat transfer coefficient, 
and Nu, is the Nusselt number anywhere on the solid surface. Also, St = 
(Tm-Tm)/(L/Cp), Re = U,R,/v, PG = VGRl/a and Pr = v/a. Equation (31a) is the 
principal result of this analysis. The paraboloid of revolution ( A  = l ) ,  which was 
studied by Ananth & Gill (1988a), and the parabolic cylinder ( A  = 03) occur as 
special cases of (31a). In  the next section we shall show that the shape (aspect ratio) 
has a particularly large effect on heat transfer a t  low Reynolds numbers. 

The results of Ananth & Gill (1988b) for axisymmetric thermal convection with 
A = 1 are similar to (31 b )  except that Re is replaced by Cr. In  the axisymmetric 
thermal convection case, without making additional assumptions, one can make 
direct comparisons between the mathematical results and the experimental data on 
succinonitrile for the growth velocity and tip radius as functions of A T  in the form 
V ,  = VG (AT) and R = R (AT). 

3. Results and discussion 
Equation (31) is the convective analogue of the pure conduction solution of 

Horvay & Cahn for the growth of an isothermal elliptical paraboloid which preserves 
its shape as it grows. Our solution shows that an elliptical paraboloid also preserves 
its shape in the presence of Oseen viscous flow. This is in agreement with the 
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observations of Chang & Gill (1987) whose double-exposure photographs show that 
the shape of a dendrite of ice is preserved in the presence of forced flow up to five side 
branches from the tip, which appears to be approximated best by an elliptical 
paraboloid. Therefore, it seems that the effects of anisotropic attachment kinetics 
and surface tension, which we have not taken into account in the preceding analysis 
create only small deviations in the actual shape of the tip region of dendrites from 
that of an elliptical paraboloid, and yet these anisotropic effects may be crucial in 
selecting particular values of R ,  and R ,  and V,, for fixed values of AT and U,. 

The primary driving force for growth is the subcooling. If St is zero, no growth 
takes place. However, for finite values of St the intensity of convection, as indicated 
by the value of Re, can influence the growth rate profoundly. Furthermore the 
interactions among the parameters can be very complex. Therefore, our goal now is 
to illustrate how the various transport mechanisms (convection, conduction, 
apparent convection due to the moving boundary) compete for dominance in the 
growth process. We also hope to demonstrate how shape, as reflected in A, favours 
one mechanism or the other. 

At this point it seems desirable to try to make clear what we mean by the 
distinction between ‘real ’ and ‘apparent’ convection. Real convection is measured 
by Re and it occurs only when the melt is in motion. Apparent convection is 
measured by PG, which reflects the motion of the interface and augments heat 
transfer, as does Re, but the effect is autocatalytic in the sense that the solutions 
given by (31a) define the set PG = &(A, Re, St, Pr) .  

Figure 2 displays the solutions given by (31 a )  for the ice-water system (PT = 13.5) 
in the form PG versus St, with A and Re as parameters. Clearly, A and Re have a 
significant effect on P,, and this effect is more pronounced when the subcooling, 
as reflected by St, is small and the effect of the moving boundary, compared to that 
of convection in the melt, is small. As the intensity of convection increases, the effect 
of the moving boundary becomes less significant (Pe B PG), and the right-hand side 
of (31 a)  becomes independent of PG. Therefore, PG varies linearly with St, as shown by 
the fact that lines (a)-(d)  in figure 2 are straight a t  small St and large Re, and PJSt 
is independent of St. 

Figure 3 shows that the effect of A on PG decreases as Re increases. For example 
at Re = 1 an increase in A beyond 10 does not affect P, significantly as shown by 
curve ( e )  of figure 3. 

Figure 4 shows two photographs of ice crystals grown in a quiescent melt which is 
at a AT = 0.3 K. In figure 4 ( a )  a double-exposure photograph indicates that the 
shape is preserved between exposures and one sees that the tip of the dendrite is split 
because it had become unstable at an earlier time. Figure 4 ( b )  displays the same 
dendrite a t  a later time a t  which it has reorganized itself and a new stable tip has been 
generated. The deep vertical indentation on the left-hand side of the main stem is a 
result of the tip splitting event which had occurred earlier and is shown in figure 4(a). 
The tip radius R ,  of the fully developed dendrite in figure 4 ( b )  is about 200 pm which 
is 100 times the value of R ,  given by Kallungal. 

Our self-consistent analysis of the flow and energy equations yields a solution 
which includes a shape that is very close to the one observed in ice experiments 
illustrated in figure 4(b) and those that will be discussed subsequently. Therefore, one 
would expect that the thermal field and the heat transfer rates in the liquid phase 
given by (25) and (31a) are reasonable approximations, especially at the tip where 
attachment kinetics are very rapid along the A-axis and the melting point depression 
due to capillarity is less than 4 YO as indicated by Kind et al. (1987) for the ice-water 
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St = Vnl- T,)/(L/C,) 

FIGURE 2. Effect of Reynolds number Re = U,R,/v, and the aspect ratio A = R,/R,, on 
growth PBclet number Pc, as a function of Stefan number St. Pr = v/a = 13.5. 

system. On the other hand, as assumed by Fujioka & Sekerka (1974), slow interfacial 
kinetics may inhibit growth along the c-axis, especially downstream from the tip, and 
this decreases the interfacial temperature, which would induce heat conduction in 
the solid phase back from the tip, and may result in higher growth PBclet numbers 
than are given by (31 a ) ,  which is derived assuming that the solid phase is isothermal. 
The lack of experimental data for the kinetic coefficient, which is anisotropic, makes 
it difficult to estimate the appropriate lengthscale for the solid-phase conduction and 
hence its contribution to the growth rate of the tip. As a result, we have chosen to 
examine (31 a)  by using the experimental data of Kallungal & Barduhn, and Chang & 
Gill and this may give some hint regarding the importance of kinetic resistance. 
Several alternatives are available for making these comparisons between our theory 
and the experimental data. However, considering the uncertainty in the R, and €2, 
data, none of these approaches is expected to yield definitive results. We have tried to 
choose an approach that is sensitive to small changes in the measured quantities and 
one which therefore will emphasize differences between the experiments and theory. 
Thus we plot P G / X t  as a function of Re by using (31a)  for various values ofA and St. 
If one also plots Kallungal's data on the same graph then the combination of 
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10-4 
1 10 100 

A = R , / R ,  

FIGURE 3. The effect of shape on the growth PBclet number at various levels of convection 
in the melt, Re: (a) Re = 0 ;  ( b )  1 x AT = 0.8 "C, 
Pr = 13.5. 

( c )  1 x ( d )  1 x 10-l; ( e )  1.0. St = 1 x 

theoretical and experimental results yields a value of A ,  which gives a value of R, 
that can be compared with the experimental data reported by Chang. These 
comparisons and their implications are discussed in this section with the intention of 
gaining some insight into the effect of convection in the melt on the interaction 
among the various parameters and their affect on the growth process. 

Kallungal (1974) measured the aspect ratio and reported it to be about 100 at 
small values of Re, which is consistent with our figure 4. The data points of 
Kallungal, for three different subcoolings are shown on figure 5 ,  and they agree quite 
well with the theory when Re is less than about This suggests that the shape of 
the ice dendrite tip is not changed significantly by the introduction of a small amount 
of convection. This seems to agree with the fact that the succinonitrile dendritic tip 
( A  = 1) remains approximately parabolic despite the presence of thermal convection 
of the order of Gr x low4 (Ananth & Gill 19883) in the experiments of Huang & 
Glicksman (1981) and Glicksman & Huang (1982). As Re increases above lo-', 
however, the theoretical results for A = 100 shown in figure 5 underpredict the ice 
data, which may be due to a decrease in A as Re increases. This effect of Re on A is 
in accord qualitatively with the experimental data of Chang (1985) which shows that 
R ,  decreases as Re increases. Figure 5 also shows that the effect of convection on PG 
becomes significant when Re gets larger than 
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FIGURE 4. The double-exposure photographs, shown on (a ) ,  indicate the shape-preserving nature 
of dendritic growth. (b )  Shows a photograph of the same steadily growing stable tip taken at a later 
time. 

AT 
10-2. St 

(a) 1.5 x 10-3, 0.12 o c  

(b) 3.6 x 0.28 "C 
8 
\ 

10-3 - (c) 1.3 x lo-*, 1.03 "C 

(4 I . " X  x x 

10-5 L 4 1 
0 10-6 10-5 10-4 10-3 10-2 10-1 1 .o 10 

Re = U, R J v  

FIGURE 5. Comparison of the theory (-) for growth PBclet number as a function of Reynolds 
number with the ice data of Kallungal ( x ) a t  aspect ratio = 100. Pr = 13.5. 

Figure 6 illustrates the competition between the augmentation of the heat transfer 
rate by the moving boundary and by convection in the melt. When the subcooling 
is on the order of 1 "C or less, the effect of the moving boundary on Nu becomes small 
as Re gets larger than Therefore, the 
Nusselt number becomes a function only of A and Re, so that Nu = Nu(A, Re) for 
Re > This implies that theories based on a stationary configuration, such as that 
of Dash & Gill (1984), give reasonable results when convection in the melt dominates 
the moving-boundary effect. 

and it is negligible for Re larger than 
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FIGURE 7. Variation of aspect ratio with Reynolds number. Obtained from the comparisons 
between theory and Kallungal-Barduhn data on ice shown in figure 6. Pr = 13.5. 

The predicted values of Nu as a function of Re are shown on figure 6 for various 
values of A .  The experimental data points (Nu, Re) of Kallungal, when plotted on 
figure 6, correspond to various values of the aspect ratio A as a function of Re. The 
resulting values of A ,  which are displayed on figure 7, show that the tip of an ice 
dendrite becomes more symmetric ( A  decreases) and tends towards a paraboloid of 
revolution as Re is increased. The reasons why the aspect ratio decreases with 
increasing Re have not been established, but they probably are related to the 
anisotropic Gibbs-Thompson capillarity and surface kinetics, which we have not 
included in the present analysis. 

Since A = RJR, we can calculate R, by using Kallungal’s values of R,, which he 
found to be insensitive to Re, at  least up to Re - 0.1. Therefore, figure 7 suggests that 
R, decreases as Re increases and this behaviour is in qualitative agreement with the 
experimental data of Chang as shown in figure 8. Figure 8 also shows that the values 
of R, indicated by the theory are too small at large values of Re and too large at  small 
values of Re. This quantitative discrepancy between the combination of our theory 
with the data of Kallungal and the values of R ,  which Chang observed may stem 
from two sources: 

(i) Small errors in the measurements of R, and VG create errors in Pc which lead 
to larger errors in the calculated values of A because, as shown in figures 3 and 6, PG 
becomes less sensitive to changes in A as the Reynolds number increases and 
approaches 1. 

(ii) Interfacial kinetic resistance to growth in the direction of the c-axis, which has 
been discussed by Fujioka & Sekerka (1974), and the capillarity effect a t  the tip, may 
be responsible for the difference between the calculated and observed values of R,. 
Kinetic resistance becomes more important as Re increases and heat transfer rates 
become inherently larger. This causes the temperature of the surface of the basal 
plane to approach T, because of kinetic undercooling. Therefore conduction is 
induced in the solid phase from the tip to the rear of the dendrite and this increases 
the growth rate. The omission of this effect in the theory would manifest itself in a 
predicted value of PG which is too small if the correct experimental value of A were 
used. Therefore when we combine Kallungal’s experiments with our theory we may 
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10-1 
~ Oseen viscous flow theory 

(elliptical paraboloid) 
-0- Ice data of Chang & Gill 

10-4 
10-5 10-4 10-3 lo-= lo-' 

Re = U, R J v  

FIQURE 8. Comparison of estimated values of tip radius measured parallel to the basal plane, R,, 
as a function of Reynolds number with the data on ice of Chang & Gill. AT = 0.44 "C, Pr = 13.5. 

get a calculated value of A which is too small in order to enable the theory to 
compensate for the omission of the kinetic resistance. On the other hand when Re is 
small, and heat transfer rates are inherently smaller, kinetics may not be as 
important and kinetic undercooling would be smaller. If this is the case, capillarity 
can induce solid-phase heat conduction toward the tip and reduce heat transfer to 
the melt. This Gibbs-Thompson effect inhibits the growth rate and may account for 
the theory indicating values of A that are too large at small values of Re. 

4. Conclusions 
Our analysis leads to the following conclusions : 
(i) Self-consistent solutions to the NavierStokes and energy equations can be 

obtained for isothermal elliptical paraboloids if the Oseen viscous flow approximation 
is made. 

(ii) As Re increases and convection intensifies, the effect of aspect ratio on the 
growth PBclet number PG becomes less significant. 

(iii) The effect of the moving boundary on the growth rate of the dendrite tip 
becomes negligible for Pe 9 PG, in which case PG varies linearly with St. This occurs 
when AT < 1 "C and Re > 

(iv) Comparison of the theoretical solutions with the experimental data of 
Kallungal (1974) indicates that A, for the growth of ice in water subcooled to 
AT 5 1 OC, decreases, as illustrated in figure 7, as Re increases beyond lop3. This 
is in agreement qualitatively with the experimental data of Chang (1985). More 
precise experiments and a full theory which accounts for the anisotropic effects are 
needed for quantitative understanding of ice crystal growth a t  large Re. 

in the case of ice dendrites. 

This work was supported in part by NSF Grants CBT8506585, 8513606 and 
8796343. 
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Note added in proof. After this article was submitted for publication, an article 
appeared by Saville & Beaghton (1988) which extends the solution of Dash & Gill 
(1984) for Oseen forced viscous flow over a paraboloid of revolution to the case of a 
moving interface considered by Gill et al. (1987) and Ananth & Gill (1988~) .  The 



590 R.  Ananth and W .  N .  Gill 

methods used are different, and Saville & Beaghton appear to have used directly the 
Oseen velocity profiles of Wilkinson (1955) which are for stationary paraboloids. 
Therefore, their equation (2.20) seems to be approximate and different from the 
exact solution given in equation (49) of Ananth & Gill (1988~) .  Also, no comparisons 
with experimental data were made by Saville & Beaghton. 

Appendix A 
The fluid velocity components, u, v, w, measured with respect to an observer 

moving with the solid-liquid interface, are obtained by solving (12)-( 15) with the 
boundary conditions (17) and (18) given in the text. Let 

u = U,+V,-u‘, 

2, = -v’ 

(A 3) w = -w‘ 

where u’, v‘, w’ are the perturbed velocity components along the directions x-, y-, z-, 
respectively. By substituting (A 1)-(A 3) into (12)-(15), (17) and (18), we get 

a w  a w  azWl 

The boundary conditions become 

u’ = Urn, v’ = w’ = 0 at 7 = 1, 

u ’ = v ’ = w ’ = O  at  q=a. 

If functions M(7)  and N(7) are defined such that 

and 
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then (A 4)-(A 9) can be reduced to the following form by substituting (A 10)-(A 13) 
into them : 

y is given by (lo), and M,N are functions of y only. 
By substituting (10) into (A 14) and (A 15) we obtain 

1 

1 -+- Re’+-+ 
d2N dy2 2 ’{ y 

Integration of (A 16) and (A 17) yields 

and 

h I 

where C,,C, ,C, ,C,  are the constants of integration. These constants can be 
evaluated by substituting (A 18) and (A 19) into (A 10)-(A 13) for the perturbed 
velocities and using the boundary conditions (A 8) at  y = 1 and (A 9) at y = 00. The 
resulting solutions are given by (2 1 )-( 24). 

Appendix B. Stokes flow solution for the growth of an elliptical 
paraboloid 

The flow field is given by 
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The pressure is given by 

and 

where 

1 +Af 

The thermal field and Nusselt number are given by (25) and (31a) respectively. 
Equations (B 1)-(B 5) satisfy the differential equations (12) to (16) with Re 
appearing on the left hand sides of equations (13)-( 15) being replaced by VGR,/a. 
They also satisfy the boundary condition at the surface (7 = 1 )  given by (17) but not 
the far-field condition. Therefore, the Stokes solution is valid only up to a distance 
y % 2/Re’ from the surface. By matching equations (B 1)-(B 5) with the Oseen 
solution given by (21)-(24), and (26) to the order Re’ for small Re and for 7 < 2/Re‘ 
the constant ‘q’  is determined as 

u‘x 
= f” exp (-Re’ 7/2) 

J 1  [T,I(l+T)] 
As noted in the Introduction, the Oseen approximation to the Navier-Stokes 

equations become inaccurate as A +  00 and the body becomes a parabolic cylinder. 
Therefore, equation (B 6) becomes inaccurate and yields q = 0.8Um(Re’);, for 
parabolic cylinders, instead of q = 0.53Um(Re’)t which is obtained by using the 
numerical solutions of the Navier-Stokes equations given by Davis (1972). 

Clearly the Oseen solution, equations (21)-(24) and (28)’ reduces to Stokes’ 
solution, (B 1)-(B 6), close to the solid surface when Re’ is small (Re-+O and 
7 < 2/Re’). Therefore, both the Oseen and Stokes approximations yield the same 
results for the thermal field and the Nusselt number, for small Re‘ and large Pr,  
because the thermal boundary layers are thin. 
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